Evolution of Diffusion Length and Trap State Induced by Chloride in Perovskite Solar Cell
نویسندگان
چکیده
Chloride (from PbCl2 or CH3NH3Cl) has been reported to improve the morphology of perovskite thin film and power conversion efficiency (PCE) of corresponding perovskite solar cells (PSCs). However, the mechanism why chloride functions well in perovskite is unclear. In this work, we investigate the effects of chloric additive (from CH3NH3Cl) on the morphology, diffusion length, and trap state of perovskite thin film, as well as the PCE of PSC. We find that the chloric additive can significantly increase the hole and electron diffusion length and also reduce the bulk trap-state density in perovskite thin film, which is considered to be the main reason for improving the performance of PSC. These results contribute to better understanding of the function of chloride in perovskite and suggest room to further improve the PCE of PSC via decreasing the trap state in perovskite film.
منابع مشابه
Investigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells
Abstract: Perovskite solar cells have become an attractive subject in the solar energydevice area. During ten years of development, the energy conversion efficiency has beenimproved from 2.2% to more than 22%, and it still has a very good potential for furtherenhancement. In this paper, a numerical model of the perovskite solar cell with thestructure of glass/ FTO/ TiO2/...
متن کاملHigh efficient Perovskite solar cells base on Niobium Doped TiO2 as a Buffer Layer
Here, the effect of lightly Niobium doped TiO2 layer on the performance of perovskite solar cells has been studied by using solar cell capacitance simulator (SCAPS). N addition, the effects of Niobium concentration, buffer film thickness and operating temperature on the performance of the perovskite solar cell are investigated. For doping level of 3.0 mol% into the TiO2 layer, cell efficiency o...
متن کاملLight-Induced Increase of Electron Diffusion Length in a p-n Junction Type CH3NH3PbBr3 Perovskite Solar Cell.
High band gap, high open-circuit voltage solar cells with methylammonium lead tribromide (MAPbBr3) perovskite absorbers are of interest for spectral splitting and photoelectrochemical applications, because of their good performance and ease of processing. The physical origin of high performance in these and similar perovskite-based devices remains only partially understood. Using cross-sectiona...
متن کاملChloride Incorporation Process in CH₃NH₃PbI(3-x)Cl(x) Perovskites via Nanoscale Bandgap Maps.
CH3NH3PbI(3-x)Cl(x) perovskites enable fabrication of highly efficient solar cells. Chloride ions benefit the morphology, carrier diffusion length, and stability of perovskite films; however, whether those benefits stem from the presence of Cl(-) in the precursor solution or from their incorporation in annealed films is debated. In this work, the photothermal-induced resonance, an in situ techn...
متن کاملSolar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals.
Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH3NH3PbI3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH3NH3PbI3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm(-2)) illumination and exceed 3 millimeters und...
متن کامل